Sentiment analysis for measuring hope and fear from Reddit posts during the 2022 Russo-Ukrainian conflict

Author:

Guerra Alessio,Karakuş Oktay

Abstract

This article proposes a novel lexicon-based unsupervised sentiment analysis method to measure the “hope” and “fear” for the 2022 Ukrainian-Russian Conflict. Reddit.com is utilized as the main source of human reactions to daily events during nearly the first 3 months of the conflict. The top 50 “hot” posts of six different subreddits about Ukraine and news (Ukraine, worldnews, Ukraina, UkrainianConflict, UkraineWarVideoReport, and UkraineWarReports) along with their relative comments are scraped every day between 10th of May and 28th of July, and a novel data set is created. On this corpus, multiple analyzes, such as (1) public interest, (2) Hope/Fear score, and (3) stock price interaction, are employed. We use a dictionary approach, which scores the hopefulness of every submitted user post. The Latent Dirichlet Allocation (LDA) algorithm of topic modeling is also utilized to understand the main issues raised by users and what are the key talking points. Experimental analysis shows that the hope strongly decreases after the symbolic and strategic losses of Azovstal (Mariupol) and Severodonetsk. Spikes in hope/fear, both positives and negatives, are present not only after important battles, but also after some non-military events, such as Eurovision and football games.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference43 articles.

1. Rethinking sentiment analysis in the news: from theory to practice and back;Balahur;Proc. WOMSA,2009

2. quanteda: an r package for the quantitative analysis of textual data;Benoit;J. Open Source Software,2018

3. “Mining the peanut gallery: opinion extraction and semantic classification of product reviews,”;Dave;Proceedings of the 12th International Conference on World Wide Web,2003

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3