A review on AI Safety in highly automated driving

Author:

Wäschle Moritz,Thaler Florian,Berres Axel,Pölzlbauer Florian,Albers Albert

Abstract

Remarkable progress in the fields of machine learning (ML) and artificial intelligence (AI) has led to an increased number of applications of (data-driven) AI systems for the partial or complete control of safety-critical systems. Recently, ML solutions have been particularly popular. Such approaches are often met with concerns regarding their correct and safe execution, which is often caused by missing knowledge or intransparency of their exact functionality. The investigation and derivation of methods for the safety assessment of AI systems are thus of great importance. Among others, these issues are addressed in the field of AI Safety. The aim of this work is to provide an overview of this field by means of a systematic literature review with special focus on the area of highly automated driving, as well as to present a selection of approaches and methods for the safety assessment of AI systems. Particularly, validation, verification, and testing are considered in light of this context. In the review process, two distinguished classes of approaches have been identified: On the one hand established methods, either referring to already published standards or well-established concepts from multiple research areas outside ML and AI. On the other hand newly developed approaches, including methods tailored to the scope of ML and AI which gained importance only in recent years.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference145 articles.

1. A review of uncertainty quantification in deep learning: techniques, applications and challenges;Abdar;Inform. Fusion,2021

2. A neural network primer;Abdi;J. Biol. Syst,1994

3. Understanding of a convolutional neural network,;Albawi;2017 International Conference on Engineering and Technology (ICET),2017

4. Software engineering for machine learning: a case study,;Amershi,2019

5. Augmentation of current verification and validation practices,;Ammar,2006

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3