Use of big data from health insurance for assessment of cardiovascular outcomes

Author:

Krefting Johannes,Sen Partho,David-Rus Diana,Güldener Ulrich,Hawe Johann S.,Cassese Salvatore,von Scheidt Moritz,Schunkert Heribert

Abstract

Outcome research that supports guideline recommendations for primary and secondary preventions largely depends on the data obtained from clinical trials or selected hospital populations. The exponentially growing amount of real-world medical data could enable fundamental improvements in cardiovascular disease (CVD) prediction, prevention, and care. In this review we summarize how data from health insurance claims (HIC) may improve our understanding of current health provision and identify challenges of patient care by implementing the perspective of patients (providing data and contributing to society), physicians (identifying at-risk patients, optimizing diagnosis and therapy), health insurers (preventive education and economic aspects), and policy makers (data-driven legislation). HIC data has the potential to inform relevant aspects of the healthcare systems. Although HIC data inherit limitations, large sample sizes and long-term follow-up provides enormous predictive power. Herein, we highlight the benefits and limitations of HIC data and provide examples from the cardiovascular field, i.e. how HIC data is supporting healthcare, focusing on the demographical and epidemiological differences, pharmacotherapy, healthcare utilization, cost-effectiveness and outcomes of different treatments. As an outlook we discuss the potential of using HIC-based big data and modern artificial intelligence (AI) algorithms to guide patient education and care, which could lead to the development of a learning healthcare system and support a medically relevant legislation in the future.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3