An Explainable Multimodal Neural Network Architecture for Predicting Epilepsy Comorbidities Based on Administrative Claims Data

Author:

Linden Thomas,De Jong Johann,Lu Chao,Kiri Victor,Haeffs Kathrin,Fröhlich Holger

Abstract

Epilepsy is a complex brain disorder characterized by repetitive seizure events. Epilepsy patients often suffer from various and severe physical and psychological comorbidities (e.g., anxiety, migraine, and stroke). While general comorbidity prevalences and incidences can be estimated from epidemiological data, such an approach does not take into account that actual patient-specific risks can depend on various individual factors, including medication. This motivates to develop a machine learning approach for predicting risks of future comorbidities for individual epilepsy patients. In this work, we use inpatient and outpatient administrative health claims data of around 19,500 U.S. epilepsy patients. We suggest a dedicated multimodal neural network architecture (Deep personalized LOngitudinal convolutional RIsk model—DeepLORI) to predict the time-dependent risk of six common comorbidities of epilepsy patients. We demonstrate superior performance of DeepLORI in a comparison with several existing methods. Moreover, we show that DeepLORI-based predictions can be interpreted on the level of individual patients. Using a game theoretic approach, we identify relevant features in DeepLORI models and demonstrate that model predictions are explainable in light of existing knowledge about the disease. Finally, we validate the model on independent data from around 97,000 patients, showing good generalization and stable prediction performance over time.

Publisher

Frontiers Media SA

Reference59 articles.

1. Predicting Drug-Resistant Epilepsy - A Machine Learning Approach Based on Administrative Claims Data;An;Epilepsy Behav.,2018

2. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures;Bergstra,2013

3. Perioperative Cardiovascular Mortality in Noncardiac Surgery: Validation of the Lee Cardiac Risk Index;Boersma;Am. J. Med.,2005

4. ‘Discussion on Professor Cox’s Paper’;Breslow;J. R. Stat. Soc. Ser. B (Methodological),1972

5. R PheWAS: Data Analysis and Plotting Tools for Phenome-wide Association Studies in the R Environment;Carroll;Bioinformatics,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3