EPPO ontology: a semantic-driven approach for plant and pest codes representation

Author:

Ayllón-Benitez Aarón,Bernabé-Diaz José Antonio,Espinoza-Arias Paola,Esnaola-Gonzalez Iker,Beeckman Delphine S. A.,McCaig Bonnie,Hanzlik Kristin,Cools Toon,Castro Iragorri Carlos,Palacios Nicolás

Abstract

The agricultural industry and regulatory organizations define strategies and build tools and products for plant protection against pests. To identify different plants and their related pests and avoid inconsistencies between such organizations, an agreed and shared classification is necessary. In this regard, the European and Mediterranean Plant Protection Organization (EPPO) has been working on defining and maintaining a harmonized coding system (EPPO codes). EPPO codes are an easy way of referring to a specific organism by means of short 5 or 6 letter codes instead of long scientific names or ambiguous common names. EPPO codes are freely available in different formats through the EPPO Global Database platform and are implemented as a worldwide standard and used among scientists and experts in both industry and regulatory organizations. One of the large companies that adopted such codes is BASF, which uses them mainly in research and development to build their crop protection and seeds products. However, extracting the information is limited by fixed API calls or files that require additional processing steps. Facing these issues makes it difficult to use the available information flexibly, infer new data connections, or enrich it with external data sources. To overcome such limitations, BASF has developed an internal EPPO ontology to represent the list of codes provided by the EPPO Global Database as well as the regulatory categorization and relationship among them. This paper presents the development process of this ontology along with its enrichment process, which allows the reuse of relevant information available in an external knowledge source such as the NCBI Taxon. In addition, this paper describes the use and adoption of the EPPO ontology within the BASF's Agricultural Solutions division and the lessons learned during this work.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3