The MAS4AI framework for human-centered agile and smart manufacturing

Author:

Sidorenko Aleksandr,Motsch William,van Bekkum Michael,Nikolakis Nikolaos,Alexopoulos Kosmas,Wagner Achim

Abstract

Volatility and uncertainty of today's value chains along with the market's demands for low-batch customized products mandate production systems to become smarter and more resilient, dynamically and even autonomously adapting to both external and internal disturbances. Such resilient behavior can be partially enabled by highly interconnected Cyber-Physical Production Systems (CPPS) incorporating advanced Artificial Intelligence (AI) technologies. Multi-agent solutions can provide better planning and control, improving flexibility and responsiveness in production systems. Small modular parts can autonomously take intelligent decisions and react to local events. The main goal of decentralization and interconnectivity is to enable autonomous and cooperative decision-making. Nevertheless, a more efficient orchestration of various AI components and deeper human integration are required. In addition, global behaviors of coalitions of autonomous agents are not easily comprehensible by workers. Furthermore, it is challenging to implement an Industry 4.0 paradigm where a human should be in charge of decision-making and execution. This paper discusses a Multi-Agent System (MAS) where several software agents cooperate with smart workers to enable a dynamic and reconfigurable production paradigm. Asset Administration Shell (AAS) submodels hold smart workers' descriptions in machine-readable format, serving as an integration layer between various system's components. The self-description capability of the AAS supports the system's adaptability and self-configuration. The proposed concept supports the plug-and-produce functionality of the production modules and improves human-machine integration in the shared assembly tasks.

Funder

European Commission

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference67 articles.

1. Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing;Alexopoulos;Int. J. Comput. Integr. Manufact.,2020

2. Artificial intelligence in advanced manufacturing: Current status and future outlook;Arinez;J. Manufact. Sci. Eng.,2020

3. Expanding competitive advantage through organizational culture, knowledge sharing and organizational innovation;Azeem;Technol. Soc.,2021

4. “The semantic asset administration shell,”;Bader;Semantic Systems. The Power of AI and Knowledge Graphs,2019

5. “Implementierung eines mitarbeiterrollenbasierten informations-systems in einer modularen produktionsumgebung mittels einer menschenzentrierten verwaltungsschale,”;Birtel,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3