Deep Learning for Understanding Satellite Imagery: An Experimental Survey

Author:

Mohanty Sharada Prasanna,Czakon Jakub,Kaczmarek Kamil A.,Pyskir Andrzej,Tarasiewicz Piotr,Kunwar Saket,Rohrbach Janick,Luo Dave,Prasad Manjunath,Fleer Sascha,Göpfert Jan Philip,Tandon Akshat,Mollard Guillaume,Rayaprolu Nikhil,Salathe Marcel,Schilling Malte

Abstract

Translating satellite imagery into maps requires intensive effort and time, especially leading to inaccurate maps of the affected regions during disaster and conflict. The combination of availability of recent datasets and advances in computer vision made through deep learning paved the way toward automated satellite image translation. To facilitate research in this direction, we introduce the Satellite Imagery Competition using a modified SpaceNet dataset. Participants had to come up with different segmentation models to detect positions of buildings on satellite images. In this work, we present five approaches based on improvements of U-Net and Mask R-Convolutional Neuronal Networks models, coupled with unique training adaptations using boosting algorithms, morphological filter, Conditional Random Fields and custom losses. The good results—as high as AP=0.937 and AR=0.959—from these models demonstrate the feasibility of Deep Learning in automated satellite image annotation.

Publisher

Frontiers Media SA

Reference50 articles.

1. Tensorflow: a system for large-scale machine learning;Abadi,2016

2. Mask r-cnn for object detection and instance segmentation on keras and tensorflow AbdullaW. 2017

3. A review on semantic segmentation from a modern perspective;Atif,2019

4. Segnet: a deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan,2015

5. The OpenCV library;Bradski;Dr Dobb’s J. Software Tools.,2000

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ticino: A multi-modal remote sensing dataset for semantic segmentation;Expert Systems with Applications;2024-09

2. Local Evaluation of Large-scale Remote Sensing Machine Learning-generated Building and Road Dataset: The Case of Rwanda;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2024-07-24

3. Vectorized building footprint extraction based on improved polygonal instance segmentation network;Fifth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2024);2024-07-10

4. CornerRegNet: Building Segmentation from Overhead Imagery Using Oriented Corners in Deep Networks;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

5. Rectilinear Building Footprint Regularization Using Deep Learning;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3