Diagnostic Accuracy of Machine Learning Models to Identify Congenital Heart Disease: A Meta-Analysis

Author:

Hoodbhoy Zahra,Jiwani Uswa,Sattar Saima,Salam Rehana,Hasan Babar,Das Jai K.

Abstract

Background: With the dearth of trained care providers to diagnose congenital heart disease (CHD) and a surge in machine learning (ML) models, this review aims to estimate the diagnostic accuracy of such models for detecting CHD.Methods: A comprehensive literature search in the PubMed, CINAHL, Wiley Cochrane Library, and Web of Science databases was performed. Studies that reported the diagnostic ability of ML for the detection of CHD compared to the reference standard were included. Risk of bias assessment was performed using Quality Assessment for Diagnostic Accuracy Studies-2 tool. The sensitivity and specificity results from the studies were used to generate the hierarchical Summary ROC (HSROC) curve.Results: We included 16 studies (1217 participants) that used ML algorithm to diagnose CHD. Neural networks were used in seven studies with overall sensitivity of 90.9% (95% CI 85.2–94.5%) and specificity was 92.7% (95% CI 86.4–96.2%). Other ML models included ensemble methods, deep learning and clustering techniques but did not have sufficient number of studies for a meta-analysis. Majority (n=11, 69%) of studies had a high risk of patient selection bias, unclear bias on index test (n=9, 56%) and flow and timing (n=12, 75%) while low risk of bias was reported for the reference standard (n=10, 62%).Conclusion: ML models such as neural networks have the potential to diagnose CHD accurately without the need for trained personnel. The heterogeneity of the diagnostic modalities used to train these models and the heterogeneity of the CHD diagnoses included between the studies is a major limitation.

Publisher

Frontiers Media SA

Reference43 articles.

1. The Health Workforce Crisis in Pakistan: a Critical Review and the Way Forward;Abdullah;World Health Popul.,2014

2. Precision Cardiovascular Medicine: Artificial Intelligence and Epigenetics for the Pathogenesis and Prediction of Coarctation in Neonates;Bahado-Singh;J. Maternal-Fetal Neonatal Med.,2020

3. Big Data and Machine Learning in Health Care;Beam;Jama,2018

4. A Classifier Based on the Artificial Neural Network Approach for Cardiologic Auscultation in Pediatrics;Bhatikar;Artif. intelligence Med.,2005

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3