Semantic Representations for NLP Using VerbNet and the Generative Lexicon

Author:

Brown Susan Windisch,Bonn Julia,Kazeminejad Ghazaleh,Zaenen Annie,Pustejovsky James,Palmer Martha

Abstract

The need for deeper semantic processing of human language by our natural language processing systems is evidenced by their still-unreliable performance on inferencing tasks, even using deep learning techniques. These tasks require the detection of subtle interactions between participants in events, of sequencing of subevents that are often not explicitly mentioned, and of changes to various participants across an event. Human beings can perform this detection even when sparse lexical items are involved, suggesting that linguistic insights into these abilities could improve NLP performance. In this article, we describe new, hand-crafted semantic representations for the lexical resource VerbNet that draw heavily on the linguistic theories about subevent semantics in the Generative Lexicon (GL). VerbNet defines classes of verbs based on both their semantic and syntactic similarities, paying particular attention to shared diathesis alternations. For each class of verbs, VerbNet provides common semantic roles and typical syntactic patterns. For each syntactic pattern in a class, VerbNet defines a detailed semantic representation that traces the event participants from their initial states, through any changes and into their resulting states. The Generative Lexicon guided the structure of these representations. In GL, event structure has been integrated with dynamic semantic models in order to represent the attribute modified in the course of the event (the location of the moving entity, the extent of a created or destroyed entity, etc.) as a sequence of states related to time points or intervals. We applied that model to VerbNet semantic representations, using a class's semantic roles and a set of predicates defined across classes as components in each subevent. We will describe in detail the structure of these representations, the underlying theory that guides them, and the definition and use of the predicates. We will also evaluate the effectiveness of this resource for NLP by reviewing efforts to use the semantic representations in NLP tasks.

Funder

University of Colorado

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference47 articles.

1. Towards a general theory of action and time;Allen;Arif. Intell.,1984

2. Maintaining knowledge about temporal intervals;Allen;Commun. ACM,1983

3. “Story realization: expanding plot events into sentences,”;Ammanabrolu,2020

4. “Climbing towards nlu: on meaning, form, and understanding in the age of data,”;Bender,2020

5. “A hierarchical unification of lirics and verbnet semantic roles,”;Bonial,2011

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Portuguese Framework Semantic Role Labeling Based On Multiple Attention Mechanisms And Bi-LSTM;J APPL SCI ENG;2025

2. FrameNet at 25;International Journal of Lexicography;2024-07-05

3. My Big, Fat 50-Year Journey;Computational Linguistics;2024-01-15

4. A Systematic Review on Semantic Role Labeling for Information Extraction in Low-Resource Data;IEEE Access;2024

5. The Computational Method for Supporting Thai VerbNet Construction;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-12-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3