Leveraging diffusion models for unsupervised out-of-distribution detection on image manifold

Author:

Liu Zhenzhen,Zhou Jin Peng,Weinberger Kilian Q.

Abstract

Out-of-distribution (OOD) detection is crucial for enhancing the reliability of machine learning models when confronted with data that differ from their training distribution. In the image domain, we hypothesize that images inhabit manifolds defined by latent properties such as color, position, and shape. Leveraging this intuition, we propose a novel approach to OOD detection using a diffusion model to discern images that deviate from the in-domain distribution. Our method involves training a diffusion model using in-domain images. At inference time, we lift an image from its original manifold using a masking process, and then apply a diffusion model to map it towards the in-domain manifold. We measure the distance between the original and mapped images, and identify those with a large distance as OOD. Our experiments encompass comprehensive evaluation across various datasets characterized by differences in color, semantics, and resolution. Our method demonstrates strong and consistent performance in detecting OOD images across the tested datasets, highlighting its effectiveness in handling images with diverse characteristics. Additionally, ablation studies confirm the significant contribution of each component in our framework to the overall performance.

Publisher

Frontiers Media SA

Reference69 articles.

1. “Likelihood-free out-of-distribution detection with invertible generative models,”;Ahmadian;IJCAI,2021

2. “Restyle: a residual-based stylegan encoder via iterative refinement,”;Alaluf;Proceedings of the IEEE/CVF International Conference on Computer Vision,2021

3. “Model-agnostic out-of-distribution detection using combined statistical tests,”;Bergamin,2022

4. Classification-based anomaly detection for general data;Bergman;arXiv preprint arXiv:2005.02359,2020

5. “Adabins: depth estimation using adaptive bins,”;Bhat;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3