Author:
Chapman Alec B.,Cordasco Kristina,Chassman Stephanie,Panadero Talia,Agans Dylan,Jackson Nicholas,Clair Kimberly,Nelson Richard,Montgomery Ann Elizabeth,Tsai Jack,Finley Erin,Gabrielian Sonya
Abstract
IntroductionMeasuring long-term housing outcomes is important for evaluating the impacts of services for individuals with homeless experience. However, assessing long-term housing status using traditional methods is challenging. The Veterans Affairs (VA) Electronic Health Record (EHR) provides detailed data for a large population of patients with homeless experiences and contains several indicators of housing instability, including structured data elements (e.g., diagnosis codes) and free-text clinical narratives. However, the validity of each of these data elements for measuring housing stability over time is not well-studied.MethodsWe compared VA EHR indicators of housing instability, including information extracted from clinical notes using natural language processing (NLP), with patient-reported housing outcomes in a cohort of homeless-experienced Veterans.ResultsNLP achieved higher sensitivity and specificity than standard diagnosis codes for detecting episodes of unstable housing. Other structured data elements in the VA EHR showed promising performance, particularly when combined with NLP.DiscussionEvaluation efforts and research studies assessing longitudinal housing outcomes should incorporate multiple data sources of documentation to achieve optimal performance.
Funder
Quality Enhancement Research Initiative
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献