Abstract
Cervical cancer is a very common and severe disease in women worldwide. Accurate prediction of its clinical outcomes will help adjust or optimize the treatment of cervical cancer and benefit the patients. Statistical models, various types of medical images, and machine learning have been used for outcome prediction and obtained promising results. Compared to conventional statistical models, machine learning has demonstrated advantages in dealing with the complexity in large-scale data and discovering prognostic factors. It has great potential in clinical application and improving cervical cancer management. However, the limitations of prediction studies and prediction models including simplification, insufficient data, overfitting and lack of interpretability, indicate that more work is needed to make clinical outcome prediction more accurate, more reliable, and more practical for clinical use.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献