Cosmic Ray Background Removal With Deep Neural Networks in SBND

Author:

Acciarri R.,Adams C.,Andreopoulos C.,Asaadi J.,Babicz M.,Backhouse C.,Badgett W.,Bagby L.,Barker D.,Basque V.,Bazetto M. C. Q.,Betancourt M.,Bhanderi A.,Bhat A.,Bonifazi C.,Brailsford D.,Brandt A. G.,Brooks T.,Carneiro M. F.,Chen Y.,Chen H.,Chisnall G.,Crespo-Anadón J. I.,Cristaldo E.,Cuesta C.,de Icaza Astiz I. L.,De Roeck A.,de Sá Pereira G.,Del Tutto M.,Di Benedetto V.,Ereditato A.,Evans J. J.,Ezeribe A. C.,Fitzpatrick R. S.,Fleming B. T.,Foreman W.,Franco D.,Furic I.,Furmanski A. P.,Gao S.,Garcia-Gamez D.,Frandini H.,Ge G.,Gil-Botella I.,Gollapinni S.,Goodwin O.,Green P.,Griffith W. C.,Guenette R.,Guzowski P.,Ham T.,Henzerling J.,Holin A.,Howard B.,Jones R. S.,Kalra D.,Karagiorgi G.,Kashur L.,Ketchum W.,Kim M. J.,Kudryavtsev V. A.,Larkin J.,Lay H.,Lepetic I.,Littlejohn B. R.,Louis W. C.,Machado A. A.,Malek M.,Mardsen D.,Mariani C.,Marinho F.,Mastbaum A.,Mavrokoridis K.,McConkey N.,Meddage V.,Méndez D. P.,Mettler T.,Mistry K.,Mogan A.,Molina J.,Mooney M.,Mora L.,Moura C. A.,Mousseau J.,Navrer-Agasson A.,Nicolas-Arnaldos F. J.,Nowak J. A.,Palamara O.,Pandey V.,Pater J.,Paulucci L.,Pimentel V. L.,Psihas F.,Putnam G.,Qian X.,Raguzin E.,Ray H.,Reggiani-Guzzo M.,Rivera D.,Roda M.,Ross-Lonergan M.,Scanavini G.,Scarff A.,Schmitz D. W.,Schukraft A.,Segreto E.,Soares Nunes M.,Soderberg M.,Söldner-Rembold S.,Spitz J.,Spooner N. J. C.,Stancari M.,Stenico G. V.,Szelc A.,Tang W.,Tena Vidal J.,Torretta D.,Toups M.,Touramanis C.,Tripathi M.,Tufanli S.,Tyley E.,Valdiviesso G. A.,Worcester E.,Worcester M.,Yarbrough G.,Yu J.,Zamorano B.,Zennamo J.,Zglam A.

Abstract

In liquid argon time projection chambers exposed to neutrino beams and running on or near surface levels, cosmic muons, and other cosmic particles are incident on the detectors while a single neutrino-induced event is being recorded. In practice, this means that data from surface liquid argon time projection chambers will be dominated by cosmic particles, both as a source of event triggers and as the majority of the particle count in true neutrino-triggered events. In this work, we demonstrate a novel application of deep learning techniques to remove these background particles by applying deep learning on full detector images from the SBND detector, the near detector in the Fermilab Short-Baseline Neutrino Program. We use this technique to identify, on a pixel-by-pixel level, whether recorded activity originated from cosmic particles or neutrino interactions.

Publisher

Frontiers Media SA

Reference33 articles.

1. AbadiM. AgarwalA. BarhamP. BrevdoE. ChenZ. CitroC. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems2015

2. The DUNE far detector interim design report volume 1: physics, technology and strategies;Abi;arXiv:1807.10334

3. The DUNE far detector interim design report, volume 2: single-phase module;Abi;arXiv:1807.10327

4. The DUNE far detector interim design report, volume 3: dual-phase module;Abi;arXiv:1807.10340

5. The Single-Phase ProtoDUNE Technical Design Report

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning in experimental neutrino physics;The European Physical Journal Special Topics;2024-08-19

2. An Evaluation of DAOS for Simulation and Deep Learning HPCWorkloads;ACM SIGOPS Operating Systems Review;2024-08-14

3. Assessment of few-hits machine learning classification algorithms for low-energy physics in liquid argon detectors;The European Physical Journal Plus;2024-08-13

4. Demonstration of Portable Performance of Scientific Machine Learning on High Performance Computing Systems;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

5. Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN;Journal of Instrumentation;2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3