A hybrid computational approach to anticipate individuals in sequential problem solving

Author:

Zamprogno Giacomo,Dietz Emmanuelle,Heimisch Linda,Russwinkel Nele

Abstract

Human-awareness is an ever more important requirement for AI systems that are designed to assist humans with daily physical interactions and problem solving. This is especially true for patients that need support to stay as independent as possible. To be human-aware, an AI should be able to anticipate the intentions of the individual humans it interacts with, in order to understand the difficulties and limitations they are facing and to adapt accordingly. While data-driven AI approaches have recently gained a lot of attention, more research is needed on assistive AI systems that can develop models of their partners' goals to offer proactive support without needing a lot of training trials for new problems. We propose an integrated AI system that can anticipate actions of individual humans to contribute to the foundations of trustworthy human-robot interaction. We test this in Tangram, which is an exemplary sequential problem solving task that requires dynamic decision making. In this task the sequences of steps to the goal might be variable and not known by the system. These are aspects that are also recognized as real world challenges for robotic systems. A hybrid approach based on the cognitive architecture ACT-R is presented that is not purely data-driven but includes cognitive principles, meaning heuristics that guide human decisions. Core of this Cognitive Tangram Solver (CTS) framework is an ACT-R cognitive model that simulates human problem solving behavior in action, recognizes possible dead ends and identifies ways forward. Based on this model, the CTS anticipates and adapts its predictions about the next action to take in any given situation. We executed an empirical study and collected data from 40 participants. The predictions made by CTS were evaluated with the participants' behavior, including comparative statistics as well as prediction accuracy. The model's anticipations compared to the human test data provide support for justifying further steps built upon our conceptual approach.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3