Comparative analysis of process-induced strain glass states in austenitic and martensitic NiTi shape memory alloy plates

Author:

John Neha S.,Ashmore Bailey,Wall Michael T.,Wheeler Robert W.,Young Marcus L.,Giri Anit K.

Abstract

Strain glass alloys (SGAs) are metallic alloys with glassy martensitic nanodomains within a crystalline material that occur from compositionally or processing-induced strain. SGAs originate from shape memory alloys (SMAs) and exhibit similar shape memory properties and high actuation densities. The transition from SMA to SGA is relatively unexplored, and although there are similarities to amorphous SMAs and cold-worked SMAs, SGAs should be distinguished as a separate grouping. The transition occurs by interrupting the long-range martensitic order, which in turn disrupts the martensitic transformation, resulting in short-range martensitic order. A glassy martensitic phase is produced that exhibits enhanced structural and load-bearing abilities, functional stresses, and recoverability. In this study, the transformation from SMA to SGA is explored in two common commercially available SMAs, Ni49.5Ti50.5 and Ni50.8Ti49.2 (at. %), to compare martensitic versus austenitic SGAs, respectively. SMA plates were cold worked in 5% increments until a strain glass transition occurred. Characterizations of the samples at various stages of cold work were examined via differential scanning calorimetry (DSC), Vickers hardness, transmission electron microscopy (TEM), and synchrotron radiation X-ray diffraction (SR-XRD). Some prominent characteristics between the two plates, such as enthalpy peaks, twin size reduction, and crystallographic structure, were examined and compared to improve the understanding of the SMA to SGA transition.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3