Spatio-temporal prediction of photovoltaic power based on a broad learning system and an improved backtracking search optimization algorithm

Author:

Tang Wenhu,Huang Kecan,Qian Tong,Li Weiwei,Xie Xuehua

Abstract

The accuracy of photovoltaic (PV) power forecasting techniques relies not only on high-quality spatiotemporal data but also on an efficient feature-mining methodology. In this study, a spatiotemporal power forecasting model based on the broad learning system (BLS) and the improved backtracking search optimization algorithm (IBSOA) is proposed. The objective is to enhance the accuracy of PV power predictions while reducing the time-intensive training process associated with an extensive set of broad learning system parameters. The spatiotemporal attributes of historical data from multiple PV sites are clustered using a self-organizing map. The clustering analysis explores the spatiotemporal correlation among five photovoltaic (PV) power stations for each season between 2017 and 2018. Subsequently, the IBSOA is employed to optimize the hyperparameters of the BLS model, particularly the mapping and enhancement nodes. By utilizing hyperparameter optimization, a BSOA-based broad learning model is introduced to achieve superior accuracy. The results are assessed using the proposed method in comparison with three popular optimization algorithms: 1) genetic algorithm (GA), 2) bird swarm algorithm (BSA), and 3) backtracking search optimization algorithm (BSOA). All scenarios are validated and compared using PV plant data from the DKA center in Australia. The root-mean-square error (RMSE) indicators of the proposed prediction method are consistently lower than the worst-case scenario in each season, decreasing by 3.2283 kW in spring, 3.9159 kW in summer, 1.3425 kW in autumn, and 1.4058 kW in winter. Similarly, the mean absolute percentage error (MAPE) exhibits a reduction compared to the worst case, with a decreases of 0.882% in spring, 1.2399% in summer, 1.803% in autumn, and 1.087% in winter. The comprehensive results affirm that the proposed method surpasses alternative optimization techniques, delivering high-quality power forecasts for the given case study.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3