PV output estimation method of power distribution station area based on federated learning framework and improved transformer neural network

Author:

Chen Bo,Liu Rui,Wei Mengdi,Wang Xian,Sun Yi,Sun Donglei

Abstract

In contemporary distribution networks (DNs), characterized by extensive integration of distributed energy, the photovoltaic (PV) power output data from the distribution station areas become crucial for system planning and operational optimization. Since many PVs are installed behind-the-meter (BTM), it is difficult to directly obtain PV power data through measurement devices. Therefore, it is important to estimate the BTM PV power from the aggregating data that can be directly obtained. However, the existing estimation methods usually require centralized large-scale data training, which brings certain privacy leakage risks. In order to solve these problems, we propose a federated learning-based improved Transformer Neural Network strategy to estimate BTM PV generation at the community level with data privacy protection. Initially, enhanced Transformer neural networks, employing a fused-attention mechanism, are deployed to precisely delineate the solar power generation pattern. Subsequently, federated learning principles facilitate the sharing of specific parameters among multiple edge endpoints and a central server. This model bifurcates into two layers: an individual layer, where parameters are retained locally, and an exchange layer, where parameters are collectively shared and conveyed through momentum aggregation. This dual-layer structure effectively synchronizes the capture of both unique and common characteristics. The test on the Australian residential load dataset verifies the effectiveness of the proposed method.

Publisher

Frontiers Media SA

Reference21 articles.

1. Solar PV installation information in Australia2020

2. Multi-horizon electricity load and price forecasting using an interpretable multi-head self-attention and EEMD-based framework;Azam;IEEE Access,2021

3. Sequential service restoration for unbalanced distribution systems and microgrids;Chen;IEEE Trans. Power Syst.,2018

4. SunDance: black-box behind-the-meter solar disaggregation;Chen,2017

5. Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation;Chen;IEEE Trans. Neural Netw. Learn. Syst.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3