A DC fault current fast-computing method of MMC-HVDC grid with short circuit protection equipment

Author:

Zhang Xiong,Yang Xu,Zhuo Chaoran

Abstract

The multi-terminal modular multi-level converter-based high voltage direct current (MMC-HVDC) grid with short circuit protection equipment (SCPE) is so complex that it is difficult to estimate its fault current and analyze the performance of SCPE by conventional time-domain numerical calculation method, it meets three big obstacles. This paper has made significant progress in overcoming these obstacles. 1). By applying the modern electrical circuit theory, a systematic formulation of the differential equation set for fault current calculation is developed to avoid a lot of complex and cumbersome matrix manual calculations. 2). A novel Y-Delta transformation in the s-domain is proposed to develop an eliminating virtual node approach for a complex MMC-HVDC grid, including the ring, radial, and hybrid topologies. 3). It is difficult to solve the equivalent circuit of MMC-HVDC grid with SCPE since SCPE is a time-variable-nonlinear circuit. A canonical voltage source model of SCPE is established to transform the time-variable-nonlinear circuit into a piecewise linear circuit. Based on the three significant progresses, a DC fault current fast-computing method of MMC-HVDC grid with SCPE is put forward to deal with all kinds of MMC-HVDC grids with several kinds of SCPEs. Then, the performance of several kinds of SCPE is analyzed and compared by this method. Consequently, the proposed DC fault current fast-computing method is a new powerful tool to estimate the fault current of MMC-HVDC grid and analyze the performance of SCPE.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3