Power quality improvement using a 31-level multi-level inverter with bio-inspired optimization approach

Author:

Praveena A.,Sathishkumar K.

Abstract

In recent years, the power quality (PQ) improvements have been explored through various approaches. The employment of electronic devices with renewable energy sources has expanded the harmonics level of voltage and current. Due to harmonics, the PQ of a specific electrical system gets affected. At critical load conditions, the traditional PQ mitigation approaches fail to develop the performance of the system. Therefore, in this work, the Spider Monkey Optimization convolutional neural network (SM-CNN)-based 31-level multilevel inverter (MLI) is used. This method balances the reactive power demands and enhances real power in the grid-tied photovoltaic (PV) system. The maximum power point tracking (MPPT) algorithm depending on radial basis function neural networks (RBFNNs) is used to maximize PV power. For strengthening the voltage level of the PV and to generate higher DC voltage with a minimized switching loss, an integrated boost fly back converter (IBFC) is introduced. The presented technique is implemented in the MATLAB/Simulink platform to figure out the estimation of PQ issues. The suggested MLI lessens the total harmonic distortion (THD) value to 2.45% with an improved power factor.

Publisher

Frontiers Media SA

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3