Low-carbon economic dispatch strategy for integrated electrical and gas system with GCCP based on multi-agent deep reinforcement learning

Author:

Feng Wentao,Deng Bingyan,Zhang Ziwen,Jiang He,Zheng Yanxi,Peng Xinran,Zhang Le,Jing Zhiyuan

Abstract

With the growing concern for the environment, sustainable development centred on a low-carbon economy has become a unifying pursuit for the energy industry. Integrated energy systems (IES) that combine multiple energy sources such as electricity, heat and gas are essential to facilitate the consumption of renewable energy and the reduction of carbon emission. In this paper, gas turbine (GT), carbon capture and storage (CCS) and power-to-gas (P2G) device are introduced to construct a new carbon capture coupling device model, GT-CCS-P2G (GCCP), which is applied to the integrated electrical and gas system (IEGS). Multi-agent soft actor critic (MASAC) applies historical trajectory representations, parameter spatial techniques and deep densification frameworks to reinforcement learning for reducing the detrimental effects of time-series data on the decisional procedure. The energy scheduling problem of IEGS is redefined as a Markov game, which is addressed by adopting a low carbon economic control framework based on MASAC with minimum operating cost and minimum carbon emission as the optimization objectives. To validate the rationality and effectiveness of the proposed low-carbon economy scheduling model of IEGS based on MASAC, this paper simulates and analyses in integrated PJM-5 node system and seven nodes natural gas system.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3