Deep learning-based dynamic forecasting method and application for ultra-deep fractured reservoir production

Author:

Deng Ziyan,Zhou Dongsheng,Kang Zhijiang,Dong Hezheng

Abstract

Addressing the complex challenges in dynamic production forecasting for the deep-ultra-deep fractured carbonate reservoirs in the Tarim Basin’s Tahe Oilfield, characterized by numerous influencing factors, strong temporal variations, high non-linearity, and prediction difficulties, We proposes a prediction method based on Gated Recurrent Unit networks (GRU). Initially, the production data and influencing factors are subjected to dimensionality reduction using Pearson correlation coefficient and principal component analysis methods to obtain multi-attribute time series data. Subsequently, deep learning modeling of time series data is conducted using Gated Recurrent Unit networks. The model is then optimized using the Optuna algorithm and applied to the dynamic production forecasting of the deep-ultra-deep fractured carbonate reservoirs in the Tahe Oilfield. The results demonstrate that the Gated Recurrent Unit network model optimized by Optuna excels in the dynamic production forecasting of the Tahe fractured carbonate reservoirs. Compared with the traditional method, the mean absolute error (MAE), the root mean square error (MSE) and the mean absolute percentage error (MAPE) are reduced by 0.04, 0.1 and 1.1, respectively. This method proves to be more adaptable to the production forecasting challenges of deep fractured reservoirs, providing an effective means to enhance model performance. It holds significant practical value and importance in guiding the development of fractured reservoirs.

Publisher

Frontiers Media SA

Reference20 articles.

1. Optuna and autoML;Agrawal;Hyperparameter Optimization in Machine Learning,2021

2. Prediction methods and applications of key development indicators in fractured carbonate reservoirs;Chang;Special Oil Gas Reservoirs,2021

3. Research on principal component analysis and its application in feature extraction;Chen,2014

4. Empirical evaluation of gated recurrent neural networks on sequence modeling ChungJ. GulcehreC. ChoK. BengioY. 2014

5. Pearson correlation coefficient;Cohen;Noise Reduct. speech Process.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3