On the optimal cathode catalyst layer for polymer electrolyte fuel cells: Bimodal pore size distributions with functionalized microstructures

Author:

García-Salaberri Pablo A.,Sánchez-Ramos Arturo,Das Prodip K.

Abstract

A high advancement has been achieved in the design of proton exchange membrane fuel cells (PEMFCs) since the development of thin-film catalyst layers (CLs). However, the progress has slowed down in the last decade due to the difficulty in reducing Pt loading, especially at the cathode side, while preserving high stack performance. This situation poses a barrier to the widespread commercialization of fuel cell vehicles, where high performance and durability are needed at a reduced cost. Exploring the technology limits is necessary to adopt successful strategies that can allow the development of improved PEMFCs for the automotive industry. In this work, a numerical model of an optimized cathode CL is presented, which combines a multiscale formulation of mass and charge transport at the nanoscale (10nm) and at the layer scale (1μm). The effect of exterior oxygen and ohmic transport resistances are incorporated through mixed boundary conditions. The optimized CL features a vertically aligned geometry of equally spaced ionomer pillars, which are covered by a thin nanoporous electron-conductive shell. The interior surface of cylindrical nanopores is catalyzed with a Pt skin (atomic thickness), so that triple phase points are provided by liquid water. The results show the need to develop thin CLs with bimodal pore size distributions and functionalized microstructures to maximize the utilization of water-filled nanopores in which oxygen transport is facilitated compared with ionomer thin films. Proton transport across the CL must be assisted by low-tortuosity ionomer regions, which provide highways for proton transport. Large secondary pores are beneficial to facilitate oxygen distribution and water removal. Ultimate targets set by the U.S. Department of Energy and other governments can be achieved by an optimization of the CL microstructure with a high electrochemical surface area, a reduction of the oxygen transport resistance from the channel to the CL, and an increase of the catalyst activity (or maintaining a similar activity with Pt alloys). Carbon-free supports (e.g., polymer or metal) are preferred to avoid corrosion and enlarge durability.

Funder

Agencia Estatal de Investigación

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3