Precious Data from Tiny Samples: Revealing the Correlation Between Energy Content and the Chemical Oxygen Demand of Municipal Wastewater by Micro-Bomb Combustion Calorimetry

Author:

Korth Benjamin,Heber Claudia,Normant-Saremba Monika,Maskow Thomas,Harnisch Falk

Abstract

Wastewater treatment plants (WWTP) are aimed to be transformed from sinks into sources of energy and material. For fostering corresponding engineering efforts and economic assessments, comprehensive knowledge of the energy content of wastewater is required. We show in this proof-of-concept study that these data can be gathered by combining micro-bomb combustion calorimetry with freeze-drying. Thereby, the methodology for measuring the combustion enthalpy (ΔcH) of wastewater is significantly improved by decreasing the time demand for the drying process as only tiny amounts of samples are required. Here, the effluent of the primary clarifier of a wastewater treatment plant treating low-strength municipal wastewater was sampled on a weekly basis for 1 year, yielding 53 composite samples that were analyzed for ΔcH and standard wastewater parameters. A robust correlation between the chemical oxygen demand (COD) and ΔcH of −14.9 ± 3.5 kJ gCOD−1 (r = 0.51) was determined, verifying previous results obtained with more laborious and time-demanding methodologies. The global chemical energy potential of the sampled WWTP is presumably higher as the first treatment steps and losses during sample preparation reduced the amount of energy-rich compounds. A stronger correlation was observed between ΔcH and the biochemical oxygen demand (BOD5, r = 0.64), suggesting its usage for predicting the potential of wastewater as feedstock for biotechnological applications. This demonstrates that micro-bomb combustion calorimetry can be applied for deriving precious information on the energy content of wastewater from simple COD measurements.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3