Regional electricity market price forecasting based on an adaptive spatial–temporal convolutional network

Author:

Xu Jian,Hu Bo,Zhang Pengfei,Zhou Xiaoming,Xing Zuoxia,Hu Zhanshuo

Abstract

The accurate prediction of electricity prices has great significance for the power system and the electricity market, regional electricity prices are difficult to predict due to congestion issues in regional transmission lines. A regional electricity price prediction framework is proposed based on an adaptive spatial–temporal convolutional network. The proposed framework is expected to better explore regional electricity prices’ spatial–temporal dynamic characteristics in the electricity spot market and improve the predictive accuracy of regional electricity prices. First, different areas of the electricity market are regarded as nodes. Then, each area’s historical electricity price data are used as the corresponding node’s characteristic information and constructed into a graph. Finally, a graph containing the spatial–temporal information on electricity prices is input to the adaptive spatial–temporal prediction framework to predict the regional electricity price. Operational data from the Australian electricity market are adopted, and the prediction results from the proposed adaptive spatial–temporal prediction framework are compared with those of existing methods. The numerical example results show that the predictive accuracy of the proposed framework is better than the existing baseline and similar methods. In the twelve-step forecast example in this paper, considering the spatial dependence of the spot electricity price can improve the forecast accuracy by at least 10.3% and up to 19.8%.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power Engineering Cost Prediction Based on Data Feature Analysis and Neural Networks;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3