Deep reinforcement learning for real-time economic energy management of microgrid system considering uncertainties

Author:

Liu Ding,Zang Chuanzhi,Zeng Peng,Li Wanting,Wang Xin,Liu Yuqi,Xu Shuqing

Abstract

The electric power grid is changing from a traditional power system to a modern, smart, and integrated power system. Microgrids (MGs) play a vital role in combining distributed renewable energy resources (RESs) with traditional electric power systems. Intermittency, randomness, and volatility constitute the disadvantages of distributed RESs. MGs with high penetrations of renewable energy and random load demand cannot ignore these uncertainties, making it difficult to operate them effectively and economically. To realize the optimal scheduling of MGs, a real-time economic energy management strategy based on deep reinforcement learning (DRL) is proposed in this paper. Different from traditional model-based approaches, this strategy is learning based, and it has no requirements for an explicit model of uncertainty. Taking into account the uncertainties in RESs, load demand, and electricity prices, we formulate a Markov decision process for the real-time economic energy management problem of MGs. The objective is to minimize the daily operating cost of the system by scheduling controllable distributed generators and energy storage systems. In this paper, a deep deterministic policy gradient (DDPG) is introduced as a method for resolving the Markov decision process. The DDPG is a novel policy-based DRL approach with continuous state and action spaces. The DDPG is trained to learn the characteristics of uncertainties of the load, RES output, and electricity price using historical data from real power systems. The effectiveness of the proposed approach is validated through the designed simulation experiments. In the second experiment of our designed simulation, the proposed DRL method is compared to DQN, SAC, PPO, and MPC methods, and it is able to reduce the operating costs by 29.59%, 17.39%, 6.36%, and 9.55% on the June test set and 30.96%, 18.34%, 5.73%, and 10.16% on the November test set, respectively. The numerical results validate the practical value of the proposed DRL algorithm in addressing economic operation issues in MGs, as it demonstrates the algorithm’s ability to effectively leverage the energy storage system to reduce the operating costs across a range of scenarios.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference51 articles.

1. TensorFlow: Large-scale machine learning on heterogeneous systems AbadiM. AgarwalA. BarhamP. BrevdoE. ChenZ. CitroC. 2015

2. Reinforcement learning techniques for optimal power control in grid-connected microgrids: A comprehensive review;Arwa;Ieee Access,2020

3. Deep reinforcement learning algorithm based on optimal energy dispatching for microgrid;Bian,2020

4. Reinforcement learning and its applications in modern power and energy systems: A review;Cao;J. Mod. Power Syst. Clean Energy,2020

5. A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts;Craparo;Appl. Energy,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3