Dynamic prediction of overhead transmission line ampacity based on the BP neural network using Bayesian optimization

Author:

Sun Yong,Liu Yuanqi,Wang Bowen,Lu Yu,Fan Ruihua,Song Xiaozhe,Jiang Yong,She Xin,Shi Shengyao,Ma Kerui,Zhang Guoqing,Shen Xinyi

Abstract

Traditionally, the ampacity of an overhead transmission line (OHTL) is a static value obtained based on adverse weather conditions, which constrains the transmission capacity. With the continuous growth of power system load, it is increasingly necessary to dynamically adjust the ampacity based on weather conditions. To this end, this paper models the heat balance relationship of the OHTL based on a BP neural network using Bayesian optimization (BO-BP). On this basis, an OHTL ampacity prediction method considering the model error is proposed. First, a two-stage current-stepping ampacity prediction model is established to obtain the initial ampacity prediction results. Then, the risk control strategy of ampacity prediction considering the model error is proposed to correct the ampacity based on the quartile of the model error to reduce the risk of the conductor overheating caused by the model error. Finally, a simulation is carried out based on the operation data of a 220-kV transmission line. The simulation results show that the accuracy of the BO-BP model is improved by more than 20% compared with the traditional heat balance equation. The proposed ampacity prediction method can improve the transmission capacity by more than 150% compared with the original static ampacity.

Publisher

Frontiers Media SA

Reference33 articles.

1. Decomposition-based stacked bagging boosting ensemble for dynamic line rating forecasting;Ahmadi;IEEE Trans. Power Deliv.,2023

2. Overhead line ampacity forecasting with a focus on safety;Alberdi;IEEE Trans. Power Deliv.,2022

3. Field study of a novel dynamic rating system for power transmission lines;Bao,2015

4. Improvement of transmission line ampacity utilization by weather-based dynamic line rating;Bhattarai;IEEE Trans. Power Deliv.,2018

5. Dynamic line rating of wind farm integration transmission lines;Chen,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3