Integration of white rot mushroom cultivation to enhance biogas production from oil palm kernel pulp by solid-state digestion

Author:

Panngoen Pathompong,Leksawasdi Noppol,Rachtanapun Pornchai,Chakrabandhu Yasinee,Jinsiriwanit Siriwat

Abstract

Solid-state fermentation is one of the promising technologies for biogas production because of its low water footprint and solid output which is potentially used in fuel or agricultural applications. Oil palm kernel pulp (OPKP) is a by-product generated from the extraction of palm kernel oil from the mesocarp of the oil palm tree and usually contains a large amount of lignocellulose and moderate protein content, which makes it suitable for use as a mushroom substrate. Cultivation of white rot mushrooms on lignocellulose may enhance its biodegradation by biodelignification. In this study, the incorporation of the cultivation of edible white rot mushrooms, Pluerotus ostreatus and Pleurotus pulmonarius, to enhance biogas production by solid-state digestion was studied. The biological efficiency of mushroom production from the OPKP substrate of P. ostreatus and P. pulmonarius was 49.81% ± 11.28% and 46.94% ± 13.49%, respectively, corresponding to the substrate weight loss of 15.87% and 13.92%. After 30 days, methane yield obtained through the solid-state digestion of P. ostreatus- and P. pulmonarius-treated OPKP substrates was increased to 98.11 mL/gVS (191%) and 101.10 mL/gVS (197%), respectively, compared with the untreated OPKP substrate. In consideration of energy loss during the biological conversion, the calorific values of the OPKP substrate, P. ostreatus-treated OPKP substrate, and P. pulmonarius-treated OPKP substrate were 11.03 ± 0.71 kJ/g, 9.30 ± 0.23 kJ/g, and 8.83 ± 0.70 kJ/g, respectively, while those of the digestion residues of P. ostreatus and P. pulmonarius-treated OPKP substrates were 8.45 ± 0.13 kJ/g and 8.55 ± 0.11 kJ/g, respectively.

Funder

National Research Council of Thailand

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3