Tuning Analysis and Optimization of a Cluster-Based Aiming Methodology for Solar Central Receivers

Author:

García Jesús,Barraza Rodrigo,Soo Too Yen Chean,Vásquez Padilla Ricardo,Acosta David,Estay Danilo,Valdivia Patricio

Abstract

The challenges encountered while concentrating solar radiation from multiple heliostats into a relatively small receiver have inspired numerous aiming methodologies to distribute such concentrated radiation. Likewise, this concentrated radiation, denominated heat flux, needs to satisfy certain constraints that primarily depend on the receiver geometry, its building materials, the operating mass flow of the heat transfer fluid, and the overall solar radiation conditions. A recent study has demonstrated the effectiveness of an aiming strategy wherein a group of heliostats use a single parameter for the entire cluster and achieve the desired heat flux profile by adjusting the tuning parameters. Along similar lines, the current study was conducted to find the optimal values and the effect of two such parameters. The first parameter limits how far the aiming point of the heliostat can move from the equator line of the receiver, while the second represents its direction (upward or downward) from this line toward the edge of the receiver. Each section of a solar field was subdivided; both parameters were estimated for each subgroup, and their effect on the heat flux profile was determined. Furthermore, a parametric study was conducted using three sets of constraints for the optimization procedure. This procedure resulted in a heat flux profile that accomplished the constraints given by the allowable flux density for the receiver during the design day. The improvement using the optimal tuning parameters for the design scenario reached around 27%. Further analysis of the set of optimal values showed an adequate performance of the system at different times of the day and different days of the year. Finally, this study demonstrates how the calculated values function as a starting point for implementing the aiming methodology in different solar field and receiver combinations.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3