Overvoltage risk regulation strategy with distributed energy application in a distribution network based on the Stackelberg game

Author:

Qiu Zekai,Wang Jianbo,Zhang Xiaoqing,Lei Yuhang,Tong Chenjie,Lu Yufan,Chang Xiaoqiang

Abstract

Along with the increasing low-carbon demand of the power system, the access of a high percentage of renewable energy resources to the distribution network has a large impact on the voltage fluctuation of the system and reduces the operational reliability. In this paper, we consider utilizing the reactive capacity of distributed resources to participate in system voltage regulation to reduce node loss of load probability (LOLP) caused by node overvoltage faults and propose an overvoltage risk regulation strategy for the interaction between distribution network operators (DSOs) and distributed users in the framework of the Stackelberg game. First, the nodes are clustered and analyzed based on the two-dimensional indexes of node voltage regulation ability, and different voltage regulation compensation tariffs are assigned. Second, the cost-benefit model of voltage regulation for the leader and follower sides and the node LOLP model are constructed to measure the reliability of the system. The Stackelberg game is used to co-optimize the two parties’ compensation tariffs and voltage regulation strategies. The optimal solution of voltage regulation under the equilibrium of the game is obtained by solving using the particle swarm optimization (PSO) algorithm. Based on the IEEE-33 node system, a case study is carried out to verify that the proposed overvoltage risk regulation strategy can maximize the benefits of the regulator participants while enhancing the operational reliability of the system.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3