Note on the potential to increase the accuracy of source term calculations for spent nuclear fuel

Author:

Seidl Marcus,Schillebeeckx Peter,Rochman Dimitri

Abstract

The accuracy of source term predictions is an important factor which determines the efficiency of interim and final storage of spent nuclear fuel. To minimize the required number of storage containers and to minimize the volume and mass of facilities while maintaining safety margins requires accurate codes to predict the decay heat and the gamma and neutron sources with minimum bias for time points ranging from months to thousands of years. While the relevant nuclear data for the purpose of criticality safety received high attention in the last decades and have been extensively verified with dedicated tests, nuclear data relevant for spent nuclear fuel had smaller priority. Mostly results from a radiochemical analysis of samples taken from commercially irradiated fuel have been used for validation purposes. The comparatively sparse data available from tests which exclusively focus on nuclide vector validation under research conditions means that many factors enter the uncertainty estimate of the measurement-theory comparisons and limits the ability to validate codes to a high accuracy. Firstly, the current status of validation efforts is reviewed. Secondly, fields of improvement are explored. Thirdly, the character of uncertainty distributions in measurement-theory comparisons (C/E) of nuclide vectors is analyzed. Currently there are indications that the C/E data is thick tailed which limits improvement of code validation efforts.

Funder

H2020 European Institute of Innovation and Technology

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference89 articles.

1. Measurements of fission-product decay heat for fast reactors;Akiyama,1982

2. Bayesian updating for data adjustments and multi-level uncertainty propagation within Total Monte Carlo;Alhassan;Ann. Nucl. Energy,2020

3. Validation of spent nuclear fuel decay heat calculations using Polaris, ORIGEN and CASMO5;Shama;Ann. Nucl. Energy,2022

4. Neutron total cross section of Pu242;Auchampaugh;Phys. Rev.,1966

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3