Selection of Tropical Microalgae Species for Mass Production Based on Lipid and Fatty Acid Profiles

Author:

Andrew Audrey Rose,Yong Wilson Thau Lym,Misson Mailin,Anton Ann,Chin Grace Joy Wei Lie

Abstract

Numerous recent studies have identified microalgae biofuel as one of the major renewable energy sources for sustainable development due to their high biomass productivity, high lipid content, and availability of locally adapted strains in various geographical locations. There have been minimal studies on the fatty acid composition of lipid production on local microalgae species in Sabah, Malaysia. Thus, screening for local microalgae species capable of producing biodiesel can aid in the selection of suitable species. This study aimed to isolate and identify promising local microalga as biodiesel feedstock for mass cultivation. Eight microalgae species,Acutodesmus obliquus,Chaetoceros muelleri,Isochrysis galbana,Ankistrodesmus falcatus,Chlamydomonas monadina,Chlorella emersonii,Nannochloropsis oculata, andTetraselmis chuii,were successfully isolated and identified from Kota Kinabalu, Sabah. The isolated microalgae were characterized based on the lipid/biomass productivity, lipid content and fatty acid profiles. These isolates had biomass productivity of 0.11–0.78 g/L/day, lipid content of 11.69–39.00% dry weight, and lipid productivity of 21.11–252.64 mg/L/day. According to GC-MS analyses, four isolates produced more than 80% of C14–C18fatty acids, which wereA. falcatus(95%),C. emersonii(93%),A. obliquus(91%), andC. muelleri(81%). Despite its low biomass productivity,C. muelleriwas chosen as the best biodiesel species candidate because of its moderately high lipid productivity (42.90 mg/L/day), highest lipid content (39% dry weight), high level of MUFAs and C14–C18FAs (81.47%), with the highest oleic acid proportion (28.38%), all of which are desirable characteristics for producing high-quality biodiesel.

Funder

Universiti Malaysia Sabah

Ministry of Higher Education, Malaysia

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3