Trichinella spiralis Paramyosin Induces Colonic Regulatory T Cells to Mitigate Inflammatory Bowel Disease

Author:

Hao Chunyue,Wang Wei,Zhan Bin,Wang Zixia,Huang Jingjing,Sun Ximeng,Zhu Xinping

Abstract

Helminth infection modulates host regulatory immune responses to maintain immune homeostasis. Our previous study identified Trichinella spiralis paramyosin (TsPmy) as a major immunomodulatory protein with the ability to induce regulatory T cells (Tregs). However, whether TsPmy regulates gut Tregs and contributes to intestinal immune homeostasis remains unclear. Here we investigated the therapeutic effect of recombinant TsPmy protein (rTsPmy) on experimental colitis in mice, and elucidated the roles and mechanisms of colonic Tregs induced by rTsPmy in ameliorating colitis. Acute colitis was induced by dextran sodium sulfate (DSS) in C57BL/6J mice, and chronic colitis was induced by naïve T cells in Rag1 KO mice. Mice with colitis were pre-treated with rTsPmy intraperitoneally, and clinical manifestations and colonic inflammation were evaluated. Colonic lamina propria (cLP) Tregs phenotypes and functions in DSS-induced colitis were analyzed by flow cytometry. Adoptive transfer of cLP Tregs treated by rTsPmy into Rag1 KO chronic colitis was utilized to verify Tregs suppressive function. rTsPmy ameliorated the disease progress of DSS-induced colitis, reduced pro-inflammatory responses but enhanced regulatory cytokines production in DSS-induced colitis. Moreover, rTsPmy specifically stimulated the expansion of thymic-derived Tregs (tTregs) rather than the peripherally derived Tregs (pTregs) in the inflamed colon, enhanced the differentiation of effector Tregs (eTregs) with higher suppressive function and stability in colitis. This study describes the mechanisms of colonic Tregs induced by the Trichinella-derived protein rTsPmy in maintaining gut immune homeostasis during inflammation. These findings provide further insight into the immunological mechanisms involved in the therapeutic effect of helminth-derived proteins in inflammatory bowel diseases.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3