Classification of Cardiotocography Based on the Apriori Algorithm and Multi-Model Ensemble Classifier

Author:

Chen Meng,Yin Zhixiang

Abstract

Cardiotocography (CTG) recorded fetal heart rate and its temporal relationship with uterine contractions. CTG intelligent classification plays an important role in evaluating fetal health and protecting fetal normal growth and development throughout pregnancy. At the feature selection level, this study uses the Apriori algorithm to search frequent item sets for feature extraction. At the level of the classification model, the combination model of AdaBoost and random forest with the highest classification accuracy is finally selected by comparing various models. The suspicious class data in the CTG data set affect the overall classification accuracy. The number of suspicious class data is predicted by the multi-model ensemble method. Finally, the data set is fused from three classifications to two classifications. The classification accuracy is 0.976, and the AUC is 0.98, which significantly improves the classification effect. In conclusion, the method used in this study has high accuracy in model classification, which is helpful to improve the accuracy of fetal abnormality detection.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3