Oxygen-saturation-related functional parameter as a biomarker for diabetes mellitus—extraction method and clinical validation

Author:

Zhang Jinze,Luo Zhongzhou,Wang Gengyuan,Huang Yuancong,Fei Keyi,Liu Yushuang,Li Jiaxiong,Yuan Jin,Xiao Peng

Abstract

Purpose: To develop a computational method for oxygen-saturation-related functional parameter analysis of retinal vessels based on traditional color fundus photography, and to explore their characteristic alterations in type 2 diabetes mellitus (DM).Methods: 50 type 2 DM patients with no-clinically detectable retinopathy (NDR) and 50 healthy subjects were enrolled in the study. An optical density ratio (ODR) extraction algorithm based on the separation of oxygen-sensitive and oxygen-insensitive channels in color fundus photography was proposed. With precise vascular network segmentation and arteriovenous labeling, ODRs were acquired from different vascular subgroups, and the global ODR variability (ODRv) was calculated. Student’s t-test was used to analyze the differences of the functional parameters between groups, and regression analysis and receiver operating characteristic (ROC) curves were used to explore the discrimination efficiency of DM patients from healthy subjects based on these functional parameters.Results: There was no significant difference in the baseline characteristics between the NDR and healthy normal groups. The ODRs of all vascular subgroups except the micro venule were significantly higher (p<0.05, respectively) while ODRv was significantly lower (p<0.001) in NDR group than that in healthy normal group. In the regression analysis, the increased ODRs except micro venule and decreased ODRv were significantly correlated with the incidence of DM, and the C-statistic for discrimination DM with all ODR is 0.777 (95% CI 0.687-0.867, p<0.001).Conclusion: A computational method to extract the retinal vascular oxygen-saturation-related optical density ratios (ODRs) with single color fundus photography was developed, and increased ODRs and decreased ODRv of retinal vessels could be new potential image biomarkers of DM.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3