A novel testis-enriched gene, Samd4a, regulates spermatogenesis as a spermatid-specific factor

Author:

Ahn Jinsoo,Kim Dong-Hwan,Park Mi-Ryung,Suh Yeunsu,Lee Haesun,Hwang Seongsoo,Mamuad Lovelia L.,Lee Sang Suk,Lee Kichoon

Abstract

Spermatogenesis is the highly orchestrated process involving expression of a series of testicular genes. Testis-enriched genes are critical for cellular processes during spermatogenesis whose disruption leads to impaired spermatogenesis and male infertility. Nevertheless, among poorly investigated testicular genes are the mouse Samd4a and human SAMD4A which were identified in the current study as novel testis-enriched genes through transcriptomic analyses. In particular, as orthologous alternative splicing isoforms, mouse Samd4a E-form and human SAMD4AC-form containing the SAM domain were specific to testes. Western blot analyses revealed that the murine SAMD4AE-form was predominantly found in the testis. Analyses on GEO2R and single-cell RNA-seq datasets revealed that the Samd4a/SAMD4A expression was enriched in spermatids among various types of cells in adult testes. To investigate in vivo functions of Samd4a, Samd4a knockout mice were generated using the CRISPR/Cas9 system. The Samd4a deficiency resulted in lower testis weight, absence of elongated spermatids, and an increased number of apoptotic cells. Profiling of gene expression in human testis samples revealed that the SAMD4A expression was comparable between obstructive azoospermia patients and normal controls, but significantly lowered in nonobstructive azoospermia (NOA) patients. Among three subgroups of NOA, pre-meiotic arrest (NOA-pre), meiotic arrest (NOA-mei), and post-meiotic arrest (NOA-post), expression level of SAMD4A was higher in the NOA-post than the NOA-mei, but there was no difference between the NOA-pre and NOA-mei. The current studies demonstrated spermatid stage-specific expression of Samd4a/SAMD4A, and impairment of the late stages of spermatogenesis by disruption of the mouse Samd4a gene. These data suggest that Samd4a/SAMD4A plays an essential role in normal spermatogenesis, and SAMD4A, as a spermatid specific marker, can be used for subcategorizing NOA patients. Further understanding the molecular role of SAMD4A will advance our knowledge on genetic regulations in male infertility.

Funder

National Institute of Food and Agriculture

Rural Development Administration

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3