Ensemble averaging for categorical variables: Validation study of imputing lost data in 24-h recorded postures of inpatients

Author:

Ogasawara Takayuki,Mukaino Masahiko,Matsuura Hirotaka,Aoshima Yasushi,Suzuki Takuya,Togo Hiroyoshi,Nakashima Hiroshi,Saitoh Eiichi,Yamaguchi Masumi,Otaka Yohei,Tsukada Shingo

Abstract

Acceleration sensors are widely used in consumer wearable devices and smartphones. Postures estimated from recorded accelerations are commonly used as features indicating the activities of patients in medical studies. However, recording for over 24 h is more likely to result in data losses than recording for a few hours, especially when consumer-grade wearable devices are used. Here, to impute postures over a period of 24 h, we propose an imputation method that uses ensemble averaging. This method outputs a time series of postures over 24 h with less lost data by calculating the ratios of postures taken at the same time of day during several measurement-session days. Whereas conventional imputation methods are based on approaches with groups of subjects having multiple variables, the proposed method imputes the lost data variables individually and does not require other variables except posture. We validated the method on 306 measurement data from 99 stroke inpatients in a hospital rehabilitation ward. First, to classify postures from acceleration data measured by a wearable sensor placed on the patient’s trunk, we preliminary estimated possible thresholds for classifying postures as ‘reclining’ and ‘sitting or standing’ by investigating the valleys in the histogram of occurrences of trunk angles during a long-term recording. Next, the imputations of the proposed method were validated. The proposed method significantly reduced the missing data rate from 5.76% to 0.21%, outperforming a conventional method.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference43 articles.

1. Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: A review;Antar,2019

2. Excessive sedentary time during in-patient stroke rehabilitation;Barrett;Top. stroke rehabilitation,2018

3. Field based assessment of a tri-axial accelerometers validity to identify steps and reliability to quantify external load;Bursais;Front. Physiology,2022

4. Missing data in medical databases: Impute, delete or classify?;Cismondi;Artif. Intell. Med.,2013

5. Wearables and the internet of things (IoT), applications, opportunities, and challenges: A survey;Dian;IEEE Access,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3