On the Use of the Repeated-Sprint Training in Hypoxia in Tennis

Author:

Brechbuhl Cyril,Brocherie Franck,Willis Sarah J.,Blokker Thomas,Montalvan Bernard,Girard Olivier,Millet Gregoire P.,Schmitt Laurent

Abstract

PurposeTo examine physiological and technical responses to repeated-sprint training in normobaric hypoxia at ∼3,000 m (RSH, n = 11) or in normoxia (RSN, n = 11) compared to a control group (CON, n = 8) in well-trained tennis players. Participants were 28.8 ± 5.9 years old without any previous experience of training in hypoxia.MethodsIn addition to maintaining their usual training (CON), both RSH and RSN groups completed five tennis specific repeated-shuttle sprint sessions (4 × 5 × ∼8 s maximal sprints with ∼22 s passive recovery and ∼5 min rest between sets) over 12 days. Before (Pre), the week after (Post-1) and 3 weeks after Post-1 (Post-2), physical/technical performance during Test to Exhaustion Specific to Tennis (TEST), repeated-sprint ability (RSA) (8 × ∼20 m shuttle runs—departing every 20 s) and heart rate variability (HRV) were assessed.ResultsFrom Pre to Post-1 and Post-2, RSH improved TEST time to exhaustion (+18.2 and +17.3%; both P < 0.001), while the “onset of blood lactate accumulation” at 4 mmol L–1 occurred at later stages (+24.4 and +19.8%, both P < 0.01). At the same time points, ball accuracy at 100% V̇O2max increased in RSH only (+38.2%, P = 0.003 and +40.9%, P = 0.007). Markers of TEST performance did not change for both RSN and CON. Compared to Pre, RSA total time increased significantly at Post-1 and Post-2 (−1.9 and −2.5%, P < 0.05) in RSH only and this was accompanied by larger absolute Δ total hemoglobin (+82.5 and +137%, both P < 0.001). HRV did not change either supine or standing positions.ConclusionFive repeated sprint training sessions in hypoxia using tennis specific shuttle runs improve physiological and technical responses to TEST, RSA, and accompanying muscle perfusion responses in well-trained tennis players.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3