Extracellular cyclophilins A and C induce dysfunction of pancreatic microendothelial cells

Author:

Alvariño Rebeca,Alfonso Amparo,Pérez-Fuentes Nadia,González-Jartín Jesús M.,Gegunde Sandra,Vieytes Mercedes R.,Botana Luis M.

Abstract

Extracellular cyclophilins (eCyps) A and B are chemotactic mediators in several illnesses in which inflammation plays an important role such as diabetes and cardiovascular diseases. Recently, eCypC has been reported as a potential biomarker for coronary artery disease but its effect in endothelium has not been determined. Moreover, there is a lack of studies with all these proteins in the same model, which makes difficult a direct comparison of their effects. In this work, MS1 pancreatic microendothelial cells were treated with eCyps A, B and C and their impact on endothelial function was analysed. eCyps A and C stimulated the release of IL-6 and MCP-1 and increased the expression of the receptor CD147, but eCypB did not affect these pro-inflammatory markers. Moreover, eCypC activated the translocation of NFkB-p65 to the nucleus. All these effects were reversed by pre-treatment with cyclosporine A. eCyps also produced endothelial dysfunction, as evidenced by the decrease in eNOS activation. Finally, the crosstalk among eCyps addition and their protein and gene expression was evaluated. eCypA generated a depletion in its protein and gene levels, whilst eCyps B and C upregulated their own protein expression. Moreover, each eCyp altered the intracellular expression of other Cyps, including cyclophilin D. This work is the first report of eCyps influence on iCyps expression, as well as the first description of eCypC as an activator of CD147 receptor and a mediator of endothelial dysfunction, which points to a potential role of this protein in vascular complications associated to diabetes.

Funder

Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia

Ministerio de Ciencia e Innovación

European Commission

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3