Impacts of Changes in Atmospheric O2 on Human Physiology. Is There a Basis for Concern?

Author:

Keeling Ralph F.,Powell Frank L.,Shaffer Gary,Robbins Peter A.,Simonson Tatum S.

Abstract

Concern is often voiced over the ongoing loss of atmospheric O2. This loss, which is caused by fossil-fuel burning but also influenced by other processes, is likely to continue at least for the next few centuries. We argue that this loss is quite well understood, and the eventual decrease is bounded by the fossil-fuel resource base. Because the atmospheric O2 reservoir is so large, the predicted relative drop in O2 is very small even for extreme scenarios of future fossil-fuel usage which produce increases in atmospheric CO2 sufficient to cause catastrophic climate changes. At sea level, the ultimate drop in oxygen partial pressure will be less than 2.5 mm Hg out of a baseline of 159 mmHg. The drop by year 2300 is likely to be between 0.5 and 1.3 mmHg. The implications for normal human health is negligible because respiratory O2 consumption in healthy individuals is only weakly dependent on ambient partial pressure, especially at sea level. The impacts on top athlete performance, on disease, on reproduction, and on cognition, will also be very small. For people living at higher elevations, the implications of this loss will be even smaller, because of a counteracting increase in barometric pressure at higher elevations due to global warming.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference58 articles.

1. Limiting factors for maximum oxygen uptake and determinants of endurance performance.;Bassett;Med. Sci. Sports Exerc.,2000

2. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders.;Beall;Proc. Natl. Acad. Sci. U.S.A.,2010

3. Atmospheric oxygen over Phanerozoic time.;Berner;Proc. Natl. Acad. Sci. U.S.A.,1999

4. How well do we understand and evaluate climate change feedback processes?;Bony;J. Clim.,2006

5. Mans oxygen reserves.;Broecker;Science,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3