Field based assessment of a tri-axial accelerometers validity to identify steps and reliability to quantify external load

Author:

Bursais Abdulmalek K.,Gentles Jeremy A.,Albujulaya Naif M.,Stone Michael H.

Abstract

Background: The monitoring of accelerometry derived load has received increased attention in recent years. However, the ability of such measures to quantify training load during sport-related activities is not well established. Thus, the current study aimed to assess the validity and reliability of tri-axial accelerometers to identify step count and quantify external load during several locomotor conditions including walking, jogging, and running.Method: Thirty physically active college students (height = 176.8 ± 6.1 cm, weight = 82.3 ± 12.8 kg) participated. Acceleration data was collected via two tri-axial accelerometers (Device A and B) sampling at 100 Hz, mounted closely together at the xiphoid process. Each participant completed two trials of straight-line walking, jogging, and running on a 20 m course. Device A was used to assess accelerometer validity to identify step count and the test-retest reliability of the instrument to quantify the external load. Device A and Device B were used to assess inter-device reliability. The reliability of accelerometry-derived metrics Impulse Load (IL) and Magnitude g (MAG) were assessed.Results: The instrument demonstrated a positive predictive value (PPV) ranging between 96.98%–99.41% and an agreement ranging between 93.08%–96.29% for step detection during all conditions. Good test-retest reliability was found with a coefficient of variation (CV) <5% for IL and MAG during all locomotor conditions. Good inter-device reliability was also found for all locomotor conditions (IL and MAG CV < 5%).Conclusion: This research indicates that tri-axial accelerometers can be used to identify steps and quantify external load when movement is completed at a range of speeds.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3