A robust multiple heartbeats classification with weight-based loss based on convolutional neural network and bidirectional long short-term memory

Author:

Yang Mengting,Liu Weichao,Zhang Henggui

Abstract

Background: Analysis of electrocardiogram (ECG) provides a straightforward and non-invasive approach for cardiologists to diagnose and classify the nature and severity of variant cardiac diseases including cardiac arrhythmia. However, the interpretation and analysis of ECG are highly working-load demanding, and the subjective may lead to false diagnoses and heartbeats classification. In recent years, many deep learning works showed an excellent role in accurate heartbeats classification. However, the imbalance of heartbeat classes is universal in most of the available ECG databases since abnormal heartbeats are always relatively rare in real life scenarios. In addition, many existing approaches achieved prominent results by removing noise and extracting features in data preprocessing, which relies heavily on powerful computers. It is a pressing need to develop efficient and automatic light weighted algorithms for accurate heartbeats classification that can be used in portable ECG sensors.Objective: This study aims at developing a robust and efficient deep learning method, which can be embedded into wearable or portable ECG monitors for classifying heartbeats.Methods: We proposed a novel and light weighted deep learning architecture with weight-based loss based on a convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM) that can automatically identify five types of ECG heartbeats according to the AAMI EC57 standard. It was also true that the raw ECG signals were simply segmented without noise removal and other feature extraction processing. Moreover, to tackle the challenge of classification bias due to imbalanced ECG datasets for different types of arrhythmias, we introduced a weight-based loss function to reduce the influence of over-weighted categories in the ECG dataset. For avoiding the influence of the division of validation dataset, k-fold method was adopted to improve the reliability of the model.Results: The proposed algorithm is trained and tested on MIT-BIH Arrhythmia Database, and achieves an average of 99.33% accuracy, 93.67% sensitivity, 99.18% specificity, 89.85% positive prediction, and 91.65% F1 score.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attention-assisted hybrid CNN-BILSTM-BiGRU model with SMOTE–Tomek method to detect cardiac arrhythmia based on 12-lead electrocardiogram signals;DIGITAL HEALTH;2024-01

2. Heart Abnormality Detection Through Neural Network;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3