Development and Validation of Prediction Equation of “Athens Authentic Marathon” Men’s Race Speed

Author:

Nikolaidis Pantelis T.,Rosemann Thomas,Knechtle Beat

Abstract

AimDespite the increasing popularity of outdoor endurance running races of different distances, little information exists about the role of training and physiological characteristics of recreational runners. The aim of the present study was (a) to examine the role of training and physiological characteristics on the performance of recreational marathon runners and (b) to develop a prediction equation of men’s race time in the “Athens Authentic Marathon.”MethodsRecreational male marathon runners (n = 130, age 44.1 ± 8.6 years)—who finished the “Athens Authentic Marathon” 2017—performed a series of anthropometry and physical fitness tests including body mass index (BMI), body fat percentage (BF), maximal oxygen uptake (VO2max), anaerobic power, squat, and countermovement jump. The variation of these characteristics was examined by quintiles (i.e., five groups consisting of 26 participants in each) of the race speed. An experimental group (EXP, n = 65) was used to develop a prediction equation of the race time, which was verified in a control group (CON, n = 65).ResultsIn the overall sample, a one-way ANOVA showed a main effect of quintiles on race speed on weekly training days and distance, age, body weight, BMI, BF, and VO2max (p ≤ 0.003, η2 ≥ 0.121), where the faster groups outscored the slower groups. Running speed during the race correlated moderately with age (r = −0.36, p < 0.001) and largely with the number of weekly training days (r = 0.52, p < 0.001) and weekly running distance (r = 0.58, p < 0.001), but not with the number of previously finished marathons (r = 0.08, p = 0.369). With regard to physiological characteristics, running speed correlated largely with body mass (r = −0.52, p < 0.001), BMI (r = −0.60, p < 0.001), BF (r = −0.65, p < 0.001), VO2max (r = 0.67, p < 0.001), moderately with isometric muscle strength (r = 0.42, p < 0.001), and small with anaerobic muscle power (r = 0.20, p = 0.021). In EXP, race speed could be predicted (R2 = 0.61, standard error of the estimate = 1.19) using the formula “8.804 + 0.111 × VO2max + 0.029 × weekly training distance in km −0.218 × BMI.” Applying this equation in CON, no bias was observed (difference between observed and predicted value 0.12 ± 1.09 km/h, 95% confidence intervals −0.15, 0.40, p = 0.122).ConclusionThese findings highlighted the role of aerobic capacity, training, and body mass status for the performance of recreational male runners in a marathon race. The findings would be of great practical importance for coaches and trainers to predict the average marathon race time in a specific group of runners.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference47 articles.

1. Predictive performance models in long-distance runners: a narrative review.;Alvero-Cruz;Int. J. Environ. Res. Public Health,2020

2. Evaluation of four vertical jump tests: methodology, reliability, validity, and accuracy.;Aragón;Meas. Phys. Educ. Exerc. Sci.,2000

3. Skinfold thicknesses associated with distance running performance in highly trained runners.;Arrese;J. Sports Sci.,2006

4. Anthropometric and training characteristics of female marathon runners as determinants of distance running performance.;Bale;J. Sports Sci.,1985

5. Relationship of somatotype and physical characteristics to distance running performance in middle age runners.;Berg;J. Sports Med. Phys. Fitness,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sedentarism in Recreational Marathon Runners;Open Access Journal of Sports Medicine;2023-12

2. The impact of dieting culture is different between sexes in endurance athletes: a cross-sectional analysis;BMC Sports Science, Medicine and Rehabilitation;2022-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3