Cullin Deneddylation Suppresses the Necroptotic Pathway in Cardiomyocytes

Author:

Lewno Megan T.,Cui Taixing,Wang Xuejun

Abstract

Cardiomyocyte death in the form of apoptosis and necrosis represents a major cellular mechanism underlying cardiac pathogenesis. Recent advances in cell death research reveal that not all necrosis is accidental, but rather there are multiple forms of necrosis that are regulated. Necroptosis, the earliest identified regulated necrosis, is perhaps the most studied thus far, and potential links between necroptosis and Cullin-RING ligases (CRLs), the largest family of ubiquitin E3 ligases, have been postulated. Cullin neddylation activates the catalytic dynamic of CRLs; the reverse process, Cullin deneddylation, is performed by the COP9 signalosome holocomplex (CSN) that is formed by eight unique protein subunits, COPS1/CNS1 through COPS8/CNS8. As revealed by cardiomyocyte-restricted knockout of Cops8 (Cops8-cko) in mice, perturbation of Cullin deneddylation in cardiomyocytes impairs not only the functioning of the ubiquitin–proteasome system (UPS) but also the autophagic–lysosomal pathway (ALP). Similar cardiac abnormalities are also observed in Cops6-cko mice; and importantly, loss of the desmosome targeting of COPS6 is recently implicated as a pathogenic factor in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Cops8-cko causes massive cardiomyocyte death in the form of necrosis rather than apoptosis and rapidly leads to a progressive dilated cardiomyopathy phenotype as well as drastically shortened lifespan in mice. Even a moderate downregulation of Cullin deneddylation as seen in mice with Cops8 hypomorphism exacerbates cardiac proteotoxicity induced by overexpression of misfolded proteins. More recently, it was further demonstrated that cardiomyocyte necrosis caused by Cops8-cko belongs to necroptosis and is mediated by the RIPK1–RIPK3 pathway. This article reviews these recent advances and discusses the potential links between Cullin deneddylation and the necroptotic pathways in hopes of identifying potentially new therapeutic targets for the prevention of cardiomyocyte death.

Funder

National Institutes of Health

American Heart Association

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3