Increasing temperature-driven changes in life history traits and gene expression of an Antarctic tardigrade species

Author:

Giovannini Ilaria,Manfrin Chiara,Greco Samuele,Vincenzi Joel,Altiero Tiziana,Guidetti Roberto,Giulianini Piero,Rebecchi Lorena

Abstract

The Antarctic region has been experiencing some of the planet’s strongest climatic changes, including an expected increase of the land temperature. The potential effects of this warming trend will lead ecosystems to a risk of losing biodiversity. Antarctic mosses and lichens host different microbial groups, micro-arthropods and meiofaunal organisms (e.g., tardigrades, rotifers). The eutardigrade Acutuncus antarcticus is considered a model animal to study the effect of increasing temperature due to global warming on Antarctic terrestrial communities. In this study, life history traits and fitness of this species are analyzed by rearing specimens at two different and increasing temperatures (5°C vs. 15°C). Moreover, the first transcriptome analysis on A. antarcticus is performed, exposing adult animals to a gradual increase of temperature (5°C, 10°C, 15°C, and 20°C) to find differentially expressed genes under short- (1 day) and long-term (15 days) heat stress. Acutuncus antarcticus specimens reared at 5°C live longer (maximum life span: 686 days), reach sexual maturity later, lay more eggs (which hatch in longer time and in lower percentage) compared with animals reared at 15°C. The fitness decreases in animals belonging to the second generation at both rearing temperatures. The short-term heat exposure leads to significant changes at transcriptomic level, with 67 differentially expressed genes. Of these, 23 upregulated genes suggest alterations of mitochondrial activity and oxido-reductive processes, and two intrinsically disordered protein genes confirm their role to cope with heat stress. The long-term exposure induces alterations limited to 14 genes, and only one annotated gene is upregulated in response to both heat stresses. The decline in transcriptomic response after a long-term exposure indicates that the changes observed in the short-term are likely due to an acclimation response. Therefore, A. antarcticus could be able to cope with increasing temperature over time, including the future conditions imposed by global climate change.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3