Author:
Schwoerer Alexander Peter,Biermann Daniel,Ehmke Heimo
Abstract
IntroductionVentricular unloading during prolonged bed rest, mechanical circulatory support or microgravity has repeatedly been linked to potentially life-threatening arrhythmias. It is unresolved, whether this arrhythmic phenotype is caused by the reduction in cardiac workload or rather by underlying diseases or external stimuli. We hypothesized that the reduction in cardiac workload alone is sufficient to impair ventricular repolarization and to induce arrhythmias in hearts.MethodsRat hearts were unloaded using the heterotopic heart transplantation. The ECG of unloaded and of control hearts were telemetrically recorded over 56 days resulting in >5 × 106 cardiac cycles in each heart. Long-term electrical remodeling was analyzed using a novel semi-automatic arrhythmia detection algorithm.Results56 days of unloading reduced left ventricular weight by approximately 50%. While unloading did not affect average HRs, it markedly prolonged the QT interval by approximately 66% and induced a median tenfold increase in the incidence of ventricular arrhythmias in comparison to control hearts.ConclusionThe current study provides direct evidence that the previously reported hypertrophic phenotype of repolarization during cardiac unloading translates into an impaired ventricular repolarization and ventricular arrhythmias in vivo. This supports the concept that the reduction in cardiac workload is a causal driver of the development of arrhythmias during ventricular unloading.
Funder
Deutsches Zentrum für Herz-Kreislaufforschung