The vitellogenin receptor gene is involved in lifespan regulation of Zeugodacus cucurbitae (Coquillett) after short-term high-temperature treatment

Author:

Lian Yuyang,Peng Sihua,Yang Xiaofeng,Jia Jingjing,Li Jinlei,Wang Aqiang,Yang Shuyan,Zheng Rongjiao,Zhou Shihao

Abstract

Zeugodacus cucurbitae (Coquillett) is a highly damaging agricultural pest in many tropical and subtropical countries around the world and high temperatures usually affect its survival. To clarify the effect of short-term high temperatures on the survival and lifespan of Z. cucurbitae, newly emerged adults of three consecutive generations (F1, F2, and F3) were exposed to 25 °C, 33 °C, 37 °C, 41 °C, or 45 °C treatments for 1 h. The effect of these temperatures on survival and lifespan was evaluated using biological indicators such as lifespan and pupation rate. Then, to study the molecular regulatory mechanism of the lifespan of Z. cucurbitae after short-term high-temperature treatment, we exposed the newly emerged adults to 25 °C or 45 °C treatments for 1 h and used siRNA to interfere with the expression of the vitellogenin receptor (VgR) gene in the female to study the effect of the VgR gene on the lifespan of Z. cucurbitae. The results showed that the survival rate, lifespan, pupae weight, pupation rate, and emergence rate of Z. cucurbitae decreased with increased temperature, while the female sex ratio of offspring increased. The heat resistance of females was higher than that of males. Interference with the expression of the VgR gene resulted in shortening of the female’s lifespan by approximately 60% after exposure to 25 °C or 45 °C treatments for 1 h, which indicated involvement of the VgR gene in the regulation of Z. cucurbitae lifespan. This study provides a reference to guide integrated control of Z. cucurbitae in high-temperature seasons.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3