Selection and validation of optimal reference genes for RT-qPCR analyses in Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae)

Author:

Shen Xiu-Xian,Zhang Guo-Qiang,Zhao Yu-Xin,Zhu Xiao-Xiao,Yu Xiao-Fei,Yang Mao-Fa,Zhang Feng

Abstract

Aphidoletes aphidimyza is a predator that is an important biological agent used to control agricultural and forestry aphids. Although many studies have investigated its biological and ecological characteristics, few molecular studies have been reported. The current study was performed to identify suitable reference genes to facilitate future gene expression and function analyses via quantitative reverse transcription PCR. Eight reference genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RPS13, RPL8, RPS3, α-Tub, β-actin, RPL32, and elongation factor 1 alpha (EF1-α) were selected. Their expression levels were determined under four different experimental conditions (developmental stages, adult tissues, sugar treatment, and starvation treatment) using qRT-PCR technology. The stability was evaluated with five methods (Ct value, geNorm, NormFinder, BestKeeper, and RefFinder). The results showed that GAPDH, RPL32, and EF1-α were ranked as the best reference gene combinations for measuring gene expression levels among different developing stages and in various starvation treatments. RPL8 and RPS3 were recommended to normalize the gene expression levels among different adult tissues. RPL32, β-actin, and EF1-α were recommended sugar-feeding conditions. To validate the utility of the selected reference pair, RPL8, and RPS3, we estimated the tissue-biased expression level of a chemosensory protein gene (AaphCSP1). As expected, AaphCSP1 is highly expressed in the antennae and lowly expressed in the abdomen. These findings will lay the foundation for future research on the molecular physiology and biochemistry of A. aphidimyza.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3