Tracking endothelium-dependent NO release in pressurized arteries

Author:

Wallis Lillian,Donovan Lucy,Johnston Aaron,Phillips Lauren C.,Lin Jinheng,Garland Christopher J.,Dora Kim A.

Abstract

Background: Endothelial cell (EC) dysfunction is an early hallmark of cardiovascular disease associated with the reduced bioavailability of nitric oxide (NO) resulting in over-constriction of arteries. Despite the clear need to assess NO availability, current techniques do not reliably allow this in intact arteries.Methods: Confocal fluorescence microscopy was used to compare two NO-sensitive fluorescent dyes (NO-dyes), Cu2FL2E and DAR-4M AM, in both cell-free chambers and isolated, intact arteries. Intact rat mesenteric arteries were studied using pressure myography or en face imaging to visualize vascular smooth muscle cells (SMCs) and endothelial cells (ECs) under physiological conditions. Both NO-dyes irreversibly bind NO, so the time course of accumulated fluorescence during basal, EC-agonist (ACh, 1 µM), and NO donor (SNAP, 10 µM) responses were assessed and compared in all experimental conditions. To avoid motion artefact, we introduced the additional step of labelling the arterial elastin with AF-633 hydrazide (AF) and calculated the fluorescence ratio (FR) of NO-dye/elastin over time to provide data as FR/FR0.Results: In cell-free chambers using either Cu2FL2E or DAR-4M AM, the addition of SNAP caused a time-dependent and significant increase in fluorescence compared to baseline. Next, using pressure myography we demonstrate that both Cu2FL2E and DAR-4M AM could be loaded into arterial cells, but found each also labelled the elastin. However, despite the use of different approaches and the clear observation of NO-dye in SMCs or ECs, we were unable to measure increases in fluorescence in response to either ACh or SNAP when cells were loaded with Cu2FL2E. We then turned our attention to DAR-4M AM and observed increases in FR/FR0 following stimulation with either ACh or SNAP. The addition of each agent evoked an accumulating, time-dependent, and statistically significant increase in fluorescence within 30 min compared to time controls. These experiments were repeated in the presence of L-NAME, an NO synthase inhibitor, which blocked the increase in fluorescence on addition of ACh but not to SNAP.Conclusion: These data advance our understanding of vascular function and in the future will potentially allow us to establish whether ECs continuously release NO, even under basal conditions.

Funder

British Heart Foundation

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cracking the Endothelial Calcium (Ca2+) Code: A Matter of Timing and Spacing;International Journal of Molecular Sciences;2023-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3