Long-Distance Pollen Dispersal in Urban Green Roof and Ground-Level Habitats

Author:

Butcher Chelsea L.,Rubin Berish Y.,Anderson Sylvia L.,Lewis J. D.

Abstract

Long-distance pollen dispersal is critical for gene flow in plant populations, yet pollen dispersal patterns in urban habitats such as green roofs have not been extensively studied. Pollen dispersal patterns typically are assessed either by fitting non-linear models to the relationship between the degree of pollen dispersal and distance to the pollen source (i.e., curve fitting), or by fitting probability density functions (PDFs) to pollen dispersal probability histograms (i.e., PDF fitting). Studies using curve fitting typically report exponential decay patterns in pollen dispersal. However, PDF fitting typically produces more fat-tailed distributions, suggesting the exponential decay may not be the best fitting model. Because the two approaches may yield conflicting results, we used both approaches to examine pollen dispersal patterns in the wind-pollinated Amaranthus tuberculatus and the insect-pollinated Solanum lycopersicum at two green roof and two ground-level sites in the New York (NY, United States) metropolitan area. For the curve fitting analyses, the exponential decay and inverse power curves provided good fits to pollen dispersal patterns across both green roof and ground-level sites for both species. Similar patterns were observed with the PDF fitting analyses, where the exponential or inverse Gaussian were the top PDF at most sites for both species. While the curve fitting results are consistent with other studies, the results differ from most studies using PDF fitting, where long-distance pollen dispersal is more common than we observed. These results highlight the need for further research to compare curve and PDF fitting for predicting pollen dispersal patterns. And, critically, while long-distance pollen dispersal may be an important component of overall pollen dispersal for A. tuberculatus and S. lycopersicum in both urban green roof and ground-level sites, our results suggest it potentially may occur to a lesser extent compared with plants in less-urban areas.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Urban Pollination Ecology;Annual Review of Ecology, Evolution, and Systematics;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3