Agricultural soil physico-chemical parameters and microbial abundance and diversity under long-run farming practices: A greenhouse study

Author:

Kaur Mandeep,Li Ji,Zhang Ping,Yang He-fa,Wang Lin,Xu Ming

Abstract

The growth of agriculture led to indiscriminate use of synthetic pesticides or fertilizers and unsustainable crop management farming practices which can aggravate harmful impacts on the microbial population and physical and chemical characteristics of soil ecosystem. Based on this fact, the present study was planned to evaluate the effect of long run farming practices on different soil physico-chemical parameters and soil microbial abundance and diversity within different soil depth (0–20 cm and 20–40 cm) at Quzhou Experimental Station of China Agricultural University, Hebei, China during October and December, 2016. The effect of farming practices on soil microbial abundance and diversity was studied by phospho-lipid fatty acid (PLFA) and DNA high-throughput sequencing methods. The findings revealed that soil is neutral to slightly alkaline in nature with highest water content under organic farming (ORF) at 0–20 cm and least under conventional farming at 20–40 cm depth. It was found that the ORF significantly increased the contents of total organic carbon (TOC), total carbon (TC), ammonium nitrogen, available nitrogen (AN), total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) followed by low input and conventional farming modes in both October and December soil samples. The correlation analysis showed significantly (at p ≤ 0.05 and 0.01) strong positive relationship within different physical and chemical properties of the soil under study. ANOVA and MANOVA analysis indicated significant effect of interaction between soil depth and farming modes on soil parameters. PCA analysis showed the most significant correlation between most of the bacterial types (G + bacteria, G− bacteria, actinomycetes) and soil AP, total available nitrogen, TOC and soil WC. Pearson correlation analysis revealed a significant correlation between microbial phylum groups (Proteobacteria, Bacteroidetes, and Latescibacteria) and microbial class group (Alphaproteobacteria, Sphingobacteriia, Flavobacteriia) with most of the soil physicochemical properties.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference107 articles.

1. Soils of jelo micro-catchment in the chercher highlands of eastern ethiopia: I. Morphological and physiochemical properties.;Assen;Ethopian J. Nat. Res.,2005

2. Linking microbial community analysis and ecosystem studies: A rapid lipid analysis protocol for high throughput.;Balser;Soil Ecol. Lett.,2019

3. pH dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils.;Baolan;FEMS Microbiol. Ecol.,2014

4. A rapid method of total lipid extraction and purification.;Bligh;Can. J. Biochem. Physiol.,1959

5. The rapid method to determine total phosphorus in soils.;Bowman;Soil Sci. Soc. Am. J.,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3